CONTENTS

PREFACE xvii

1. **NON-EUCLIDEAN GEOMETRY AND ITS GENERALIZATIONS** 1
 1. The origin of geometry 1
 2. First glimpse of Non-Euclidean Geometry 1
 3. The discovery of Non-Euclidean geometry 3
 4. Geometry on different surfaces 5
 5. The generalizations of Non-Euclidean geometry 7

2. **DIFFERENTIAL GEOMETRY: ITS PAST AND FUTURE** 9
 1. Introduction 9
 2. Emergence of generalized metric structures 9
 3. Finslerian structures 10
 4. Symmetric and recurrent Finsler manifolds 11
 5. Techniques and diverse approaches in differential geometry 12

3. **METRICS OF CURVED SURFACES AND SPACES** 13
 1. Introduction 13
 2. Metric of a V_2 13
 3. Non-Euclidean metric 16
 4. Riemannian metric 16
 5. Generalized Riemannian metric 17
 6. Semi-symmetric Riemannian metric 17
 7. Finsler metric 18
 8. Generalized Finslerian metric 20
 9. Berwald metric 20
 10. Landsberg metric 20
 11. Randers’ metric 21
 12. C-reducible (Finsler) metric 21
 13. P-reducible (Finsler) metric 22
 14. P_2-like (Finsler) metric 22
 15. S_3-like (Finsler) metric 23
 16. Kropina metric 23
17. Kawaguchi metric 23
18. Areal metric 24
19. Kähler metric 24

4. BASIC CONCEPTS OF FINSLERIAN GEOMETRY 25

1. Finsler manifold 25
2. The metric tensor 26
3. Generalized Christoffel symbols 27
4. Two processes of Rund’s covariant differentiation 28
5. Euclidean connection of Cartan and his two processes of covariant derivation 30
6. Berwald’s connection and his covariant derivation 33
7. Curvature tenors 35
8. Some additional commutation formulae 38
9. Various properties of curvature tensors 39
10. Bianchi identities satisfied by various curvature tensors 43
11. Special Finsler manifolds 46
 11.1 Isotropic manifolds 46

5. TRANSFORMATIONS IN FINSLER SPACE 51

1. Paths and projective connection in a Finsler space 51
 1.1 Projective connection parameters 52
2. Projective curvature tensor 55
 2.1 Properties of W^i_j 56
 2.2 Tensor W^i_{jk} 56
 2.3 Properties of projective curvature tensor 57
3. Conformal transformation 59
 3.1 Conformal change in connection parameters 61
 3.2 Conformal change in curvature tensor 62
 3.3 Conformal connection parameters 63
4. Infinitesimal transformation 65
5. Infinitesimal motion. Killing equations 66
 5.1 Applications of Killing equation 67
6. Infinitesimal translation 70
7. Infinitesimal conformal motion. Homothetic motion 70
8. Infinitesimal transformations preserving geodes-
ics

9. Diverse forms of generator of infinitesimal transformation
 9.1 F_n with special concircular infinitesimal transformations
 9.2 Concircular infinitesimal transformations (c.i.t.) in F_n
 9.3 Special c.i.t. in F_n with $\rho_k = 0$

10. Infinitesimal transformations generated by a recurrent vector field

6. THEORY OF LIE DERIVATIVES

 1. Introduction
 2. Lie derivative
 2.1 Lie derivative of a geometric object
 2.2 Lie derivative of a contravariant vector
 2.3 Lie derivative of a covariant vector
 2.4 Lie derivative of a mixed tensor
 2.5 Lie derivative of a tensor of rank (r, s)
 3. Lie derivative of connection parameters
 4. Lie derivative of projective connection parameters
 5. Motion, affine motion and projective motion
 6. Commutation formulae involving Lie derivation
 7. Motion
 8. Affine motion
 8.1 Implications of Eq. (8.1)
 8.2 Affine motions generated by special vector fields
 8.3 Affine motions generated by special concircular vector fields
 9. Projective motion
 9.1 Special concircular projective motion
 9.2 Recurrent projective motion
 10. Curvature collineation
 10.1 H-CC
 10.2 H-CC projective motion
 10.3 Projective curvature collineation
 11. Conformal and homothetic motions in F_n with reference to Lie derivation
7. SYMMETRIC AND PROJECTIVELY SYMMETRIC FINSLER SPACES

1. Introduction
 1.1 Affine motion in $S-F_n$ and $PS-F_n$
 1.2 Projective motions in $S-F_n$ and $PS-F_n$
2. Some immediate implications of Eq. (1.1)
3. Some more identities in an $S-F_n$
4. Affine motion in an $S-F_n$ (contd.)
5. Projectively symmetric Finsler spaces
6. Possibilities for a $S-F_n$ to become projectively symmetric
 6.1 Alternate form of Eq. (5.5)
7. Bianchi identities in a $PS-F_n$
8. Some more identities in $PS-F_n$ involving Lie derivation
9. A decomposable $PS-F_n$
10. Affine motion in a $PS-F_n$

8. RECURRENT FINSLER SPACES

1. Introduction
2. $HR-F_n$ with non-zero scalar curvature
 2.1 Space of constant Riemannian curvature
 2.2 An isotropic Finsler space F_n ($n > 2$)
 2.3 $WR-F_n$ ($n > 2$)
3. $HR-F_n$ with special reference to Lie derivation
 3.1 λ_m a gradient vector
 3.2 Lie invariance of curvature tensor
 3.3 \mathcal{L}_{λ_i} a parallel vector-field
4. H_{jk}^i-recurrent space
5. H_j^i-recurrent space F_n
6. $HR-F_n$ with infinitesimal transformations of special form
 6.1 Special concircular vector field
 6.2 A relation for the tensor H_{jk}^i
 6.3 Special c.i.t.’s in a recurrent non-Riemannian space
 6.4 Contra infinitesimal transformations in $HR-F_n$
6.5 Recurrent vector-field 135
7. Affine motions in an $HR-F_n$ 135
8. Condition for $HR-F_n$ to become $AHR-F_n$ 137
9. Recurrent affine motion in $HR-F_n$ 139
9.1 Case of Eq. (9.7) 140
10. Integrability conditions of Eq. (9.13) 143
10.1 Particular case 143
11. Some more characteristics of the function σ 144
12. Implications of Eq. (9.8) in an $SHR-F_n$ 146

9. PROJECTIVE MOTIONS IN RECURRENT FINSLER SPACES 147

1. Introduction 147
2. $PHR-F_n$ 148
3. Projective motions of special types in $HR-F_n$ 150
 3.1 Parallel vector field 150
 3.2 Special c.i.t.’s in a recurrent non-Riemannian space A_n^* 150
 3.3 Special concircular projective motions in $HR-F_n$ 151
 3.4 Contra or concurrent projective motions in $HR-F_n$ 152
 3.5 Recurrent projective motion in $HR-F_n$ 154
4. Some more implications of a recurrent projective motion in an $HR-F_n$
 4.1 Gradient vector-field ϕ_j 158

10. GROUPS OF TRANSFORMATIONS IN FINSLERIAN SPACES 159

1. Introduction 159
2. Motions 159
3. Affine motions 159
4. Projective motions 161
5. Conformal transformations 163
6. Summary of groups of transformations in different Finslerian spaces 163

11. ON PROJECTIVELY FLAT FINSLERIAN SPACES 167
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>2. Projectively flat F_n</td>
<td></td>
</tr>
<tr>
<td>3. Projectively flat symmetric F_n</td>
<td></td>
</tr>
<tr>
<td>4. A projectively flat $HR-F_n$</td>
<td></td>
</tr>
<tr>
<td>5. Some more properties of the functions P and λ_j in a projectively flat $HR-F_n$</td>
<td></td>
</tr>
<tr>
<td>6. Normal projective curvature tensor in a projectively flat $HR-F_n$</td>
<td></td>
</tr>
</tbody>
</table>

12. **ON FINSLER SPACES WITH CONCIRCULAR TRANSFORMATIONS** 187

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>187</td>
</tr>
<tr>
<td>2. F_n with a concircular vector field</td>
<td>187</td>
</tr>
<tr>
<td>3. Flat manifolds admitting a c.i.t.</td>
<td>189</td>
</tr>
<tr>
<td>4. Isotropic Finsler space with a concircular vector field</td>
<td>191</td>
</tr>
<tr>
<td>5. F_n with a constant sectional curvature</td>
<td>193</td>
</tr>
<tr>
<td>6. Symmetric F_n with a concircular vector field</td>
<td>195</td>
</tr>
</tbody>
</table>

13. **ON FINSLER SPACES WITH CONCIRCULAR TRANSFORMATIONS II** 199

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>199</td>
</tr>
<tr>
<td>2. Ricci-symmetric F_n with a c.i.t.</td>
<td>199</td>
</tr>
<tr>
<td>3. $HR-F_n$ with a c.i.t.</td>
<td>203</td>
</tr>
</tbody>
</table>

14. **AN AXIOMATIC APPROACH TO TENSORS** 209

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>209</td>
</tr>
<tr>
<td>2. Vector space. Contravariant vectors</td>
<td>209</td>
</tr>
<tr>
<td>3. Dual space. Covariant vectors</td>
<td>212</td>
</tr>
<tr>
<td>4. Tensor product. Tensors</td>
<td>213</td>
</tr>
<tr>
<td>5. Various types of tensors</td>
<td>215</td>
</tr>
</tbody>
</table>

15. **PHYSICAL FIELD THEORIES** 219

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>219</td>
</tr>
<tr>
<td>2. Finslerian physics</td>
<td>220</td>
</tr>
<tr>
<td>3. Mechanics of open systems</td>
<td>222</td>
</tr>
<tr>
<td>4. Thermodynamic Finsler spaces</td>
<td>223</td>
</tr>
</tbody>
</table>