CONTENTS

PR	PREFACE		
1.		N-EUCLIDEAN GEOMETRY AND ITS VERALIZATIONS	1
	1.	The origin of geometry	1
	2.	\mathcal{S} 1	1
	3.	\mathcal{E}	3
	4.	3	5
	5.	The generalizations of Non-Euclidean geometry	7
2.		FERENTIAL GEOMETRY: ITS PAST AND URE	9
	1.	Introduction	9
	2.		9
	3.	Finslerian structures	10
	4.		11
	5.		12
		geometry	
3.	MET	TRICS OF CURVED SURFACES AND SPACES	13
	1.	Introduction	13
	2.	Metric of a V_2	13
	3.	Non-Euclidean metric	16
	4.		16
	5.		17
	6.	3	17
	7.		18
	8.		20
		Berwald metric	20
		Landsberg metric	20
		Randers' metric	21
		C-reducible (Finsler) metric	21
		P-reducible (Finsler) metric	22
		P ₂ -like (Finsler) metric	22
	15.		23
	16.	Kropina metric	23

	17.	Kawaguchi metric	23
	18.	Areal metric	24
	19.	Kähler metric	24
4.	BAS	IC CONCEPTS OF FINSLERIAN GEOMETRY	25
	1.	Finsler manifold	25
	2.	The metric tensor	26
	3.	3	27
	4.	Two processes of Rund's covariant differentiation	28
	5.	Euclidean connection of Cartan and his two pro-	30
		cesses of covariant derivation	
	6.	Berwald's connection and his covariant derivation	33
	7.	Curvature tenors	35
	8.	Some additional commutation formulae	38
	9.	1 1	39
	10.	Bianchi identities satisfied by various curvature tensors	43
	11.	Special Finsler manifolds	46
		11.1 Isotropic manifolds	46
5.	TRA	NSFORMATIONS IN FINSLER SPACE	51
	1.	Paths and projective connection in a Finsler space	51
		1.1 Projective connection parameters	52
	2.	Projective curvature tensor	55
		2.1 Properties of W_j^i	56
		2.2 Tensor W_{jk}^i	56
		2.3 Properties of projective curvature tensor	57
	3.	Conformal transformation	59
		3.1 Conformal change in connection parameters	61
		3.2 Conformal change in curvature tensor	62
		3.3 Conformal connection parameters	63
	4.	Infinitesimal transformation	65
	5.	Infinitesimal motion. Killing equations	66
		5.1 Applications of Killing equation	67
	6.	Infinitesimal translation	70
	7.	Infinitesimal conformal motion. Homothetic motion	70
	8.	Infinitesimal transformations preserving geodes-	71

		ics	
	9.		. 71
		formation	
		9.1 F_n with special concircular infinitesimal transformations	73
		9.2 Concircular infinitesimal transfor-	74
		mations (c.i.t.) in F_n	7-
		9.3 Special c.i.t. in F_n with $\rho_k = 0$	75
	10.	Infinitesimal transformations generated by a re-	75
		current vector field	
5.	THE	EORY OF LIE DERIVATIVES	77
	1.	Introduction	77
	2.		77
		2.1 Lie derivative of a geometric object	77
		2.2 Lie derivative of a contravariant vector	78
		2.3 Lie derivative of a covariant vector	79
		2.4 Lie derivative of a mixed tensor	80
		2.5 Lie derivative of a tensor of rank (r, s)	80
	3.	Lie derivative of connection parameters	82
	4.	Lie derivative of projective connection parame-	83
		ters	
	5.	Motion, affine motion and projective motion	84
	6.	\mathcal{E}	85
	7.	Motion	88
	8.	Affine motion	90
		8.1 Implications of Eq. (8.1)	93
		8.2 Affine motions generated by special vec-	93
		tor fields	0.4
		8.3 Affine motions generated by special concircular vector fields	94
	9.	Projective motion	94
		9.1 Special concircular projective motion	96
		9.2 Recurrent projective motion	98
	10.	Curvature collineation	99
		10.1 <i>H-CC</i>	100
		10.2 <i>H-CC</i> projective motion	101
		10.3 Projective curvature collineation	101
	11.	Conformal and homothetic motions in F_n with	103
		reference to Lie derivation	

	MMETRIC AND PROJECTIVELY SYMMET- C FINSLER SPACES	105
	1. Introduction	105
	1.1 Affine motion in S - F_n and PS - F_n	105
	1.2 Projective motions in S - F_n and PS - F_n	106
2	2. Some immediate implications of Eq. (1.1)	106
	3. Some more identities in an S - F_n	108
4	4. Affine motion in an S - F_n (contd.)	109
:	5. Projectively symmetric Finsler spaces	109
(6. Possibilities for a S - F_n to become projectively symmetric	111
	6.1 Alternate form of Eq. (5.5)	112
	7. Bianchi identities in a $PS-F_n$	113
;	Some more identities in PS - F_n involving Lie derivation	114
	P. A decomposable $PS-F_n$	115
10	O. Affine motion in a $PS-F_n$	117
RI	ECURRENT FINSLER SPACES	119
	1. Introduction	119
,	2. HR - F_n with non-zero scalar curvature	120
	2.1 Space of constant Riemannian curvature	122
	2.2 An isotropic Finsler space F_n ($n > 2$)	122
	2.3 $WR-F_n(n > 2)$	123
	3. HR - F_n with special reference to Lie derivation	124
	3.1 λ_m a gradient vector	126
	3.2 Lie invariance of curvature tensor	127
	3.3 £ λ_i a parallel vector-field	128
4	4. H_{jk}^i -recurrent space	129
:	5. H_i^i -recurrent space F_n	130
(6. HR - F_n with infinitesimal transformations of spe-	131
	cial form	
	6.1 Special concircular vector field	131
	6.2 A relation for the tensor H_{ik}^i	132
	6.3 Special c.i.t.'s in a recurrent non- Riemannian space	133
	6.4 Contra infinitesimal transformations in HR - F_n	134

		6.5 Recurrent vector-field	135
	7.	Affine motions in an HR - F_n	135
	8.	Condition for HR - F_n to become AHR - F_n	137
	9.	Recurrent affine motion in HR - F_n	139
		9.1 Case of Eq. (9.7	140
	10.	Integrability conditions of Eq. (9.13)	143
		10.1 Particular case	143
	11.	Some more characteristics of the function σ	144
	12.	Implications of Eq. (9.8) in an $SHR-F_n$	146
9.		JECTIVE MOTIONS IN RECURRENT SLER SPACES	147
	1.	Introduction	147
	2.	PHR - F_n	148
	3.	Projective motions of special types in HR - F_n	150
		3.1 Parallel vector field	150
		3.2 Special c.i.t.'s in a recurrent non- Riemannian space A_n^*	150
		3.3 Special concircular projective motions in $HR-F_n$	151
		3.4 Contra or concurrent projective motions in HR - F_n	152
		3.5 Recurrent projective motion in HR - F_n	154
	4.	Some more implications of a recurrent projective motion in an HR - F_n	157
		4.1 Gradient vector-field ϕ_j	158
10.		OUPS OF TRANSFORMATIONS IN FINS- IAN SPACES	159
	1.	Introduction	159
	2.		159
	3.	Affine motions	159
	4.	3	161
	5.	Conformal transformations	163
	6.	Summary of groups of transformations in different Finslerian spaces	163
11	ONI	DDO IFCTIVELV ELAT EINSLEDIAN SDACES	167

	1.	Introduction	167
	2.	Projectively flat F_n	167
	3.	Projectively flat symmetric F_n	173
	4.	A projectively flat HR - F_n	174
	5.		179
		in a projectively flat HR - F_n	
	6.	Normal projective curvature tensor in a projectively flat HR - F_n	184
12.	ON I	FINSLER SPACES WITH CONCIRCULAR	187
	TRA	NSFORMATIONS	
	1.	Introduction	187
		F_n with a concircular vector field	187
	3.	Flat manifolds admitting a c.i.t.	189
	4.	Isotropic Finsler space with a concircular vector field	191
	5.		193
	6.		195
13.		FINSLER SPACES WITH CONCIRCULAR INSFORMATIONS II	199
	1.	Introduction	199
	2.	Ricci-symmetric F_n with a c.i.t.	199
	3.	HR - F_n with a c.i.t.	203
14.	AN A	AXIOMATIC APPROACH TO TENSORS	209
	1.	Introduction	209
	2.	1	209
	3.	<u>.</u>	212
	4.	1	213
	5.	Various types of tensors	215
15.	PHY	SICAL FIELD THEORIES	219
	1.	Introduction	219
	2.	Finslerian physics	220
	3.	Mechanics of open systems	222
	4.	Thermodynamic Finsler spaces	223

BIBLIOGRAPHY	225
SYMBOLS AND ABBREVIATIONS	245
INDEX	257