CONTENTS

PREFACE		xiii	
1	MATRICES AND DETERMINANTS		1
	1	Matrix	1
	2	Some special matrices	1
		2.1. Null matrices	1
		2.2. Diagonal matrix	2
		2.3. Scalar matrix	2
		2.4. Identity matrix	2
		2.5. Triangular matrices	3
		2.6. Equal matrices	3
		2.7. Transpose matrix	3
		2.8. Symmetric matrix	3
		2.9. Skew symmetric matrix	4
		2.10. Singular matrix	4
		2.11. Non-singular matrix	4
		2.12. Row matrix	4
		2.13. Column matrix	4
		2.14. Nilpotent matrix	5
		2.15. Idempotent matrix	5
		2.16. Orthogonal matrix	6
		2.17. Similar matrices	6
		2.18. Conjugate matrix	6
		2.19. Hermitian matrix	6
		2.20. Skew-Hermitian matrix	6
		2.21. Unitary matrix	7
		2.22. Echelon form	7
		2.23. Jordon canonical form	7
	3	Addition of two (or more) matrices	7
	4	Multiplication of a matrix by a scalar	8
	5	Multiplication of matrices	9
	6	Determinant	10
	7	Some properties of determinants	12
	8	Elementary operations on matrices	13
		8.1. Comparative features	15
	9	Rank of matrix	22
		9.1. Rank of some special matrices	23
	10	Inverse of a non-singular matrix	24
		10.1. Orthogonal matrix	29
	11	Linear equations. Cramer's rule	30

	12 13 14 15 16	Homogeneous linear equations Characteristic equation of a matrix Minimal polynomial Similar matrices and diagonalization of a matrix Problem set	35 36 41 43 46
2	LIMIT	OF A FUNCTION	55
	1 2 3 4	Introduction Some properties of limits Some important limits 3.1. Properties of $f(x) = (1 + 1/x)^x$ Problem set	55 58 60 62 63
3	CONTI	NUITY OF A FUNCTION	67
	1 2 3 4	Introduction Some properties of continuous functions One-sided continuity Problem set	67 69 71 75
4	DIFFE	RENTIATION	79
4	DIFFE 1 2 3 4 5 6 7	RENTIATION Differentiation of functions Continuity of a differentiable function Derivatives of some standard functions 3.1. Algebraic functions 3.2. Exponential and logarithmic functions 3.3. Trigonometric functions 3.4. Hyperbolic functions Chain rule (<i>methods of substitution</i>) 4.1. Logarithmic differentiation Derivation of inverse trigonometric functions Implicit functions and their derivation Problem set	 79 81 84 85 87 88 89 93 95 96
4 5	DIFFE 1 2 3 4 4 5 6 7 SUCCE	RENTIATION Differentiation of functions Continuity of a differentiable function Derivatives of some standard functions 3.1. Algebraic functions 3.2. Exponential and logarithmic functions 3.3. Trigonometric functions 3.4. Hyperbolic functions Chain rule (<i>methods of substitution</i>) 4.1. Logarithmic differentiation Derivation of inverse trigonometric functions Implicit functions and their derivation Problem set	 79 81 84 85 87 88 89 93 95 96 101

Cont	ents		ix
6	APPLI	CATIONS OF DERIVATIVES	107
	1	Maxima / minima of a function on a closed interval	107
		1.1. Extrema at the end points of interval	107
		1.2. Local maxima / minima of a function	108
	2	Derivative of $f(x)$ at local extremum points	109
	3	Monotonic functions	116
	4	Application of differentiation to calculate rate of change	119
	5	Problem set	123
7	MAXIN (CONT	MA AND MINIMA OF A FUNCTION	127
	(107
		Points of local extrema	127
	2	Second derivative test for local extrema	129
	5 1	Some miscellaneous examples	132
	4	Problem Set	130
8	PARTI	AL DIFFERENTIATION	143
	1	Partial differentiation of scalar functions	143
	2	Total derivative of a function	146
	3	Euler's theorem on homogeneous functions	148
	4	Problem Set	154
9	SERIE	S AND EXPANSION OF FUNCTIONS	163
	1	Power series	163
		1.1. Interval of convergence of a power series	163
	2	Maclaurin's series	164
	3	Taylor's series	167
10	ENVEI	LOPES, INVOLUTES AND EVOLUTES	171
	1	Envelope of family of curves	171
		1.1. One-parameter family of curves	171
		1.2. Envelope of family of curves involving two parameters	174
		1.3. General method for more than one parameter	174
		1.4. Envelope in polar coordinates	176
	2	Involutes and evolutes	178

х			Contents
	3	Problem set	182
11	INTEG	RATION OF FUNCTIONS	191
	1	Introduction	191
	2	Indefinite integrals of some standard functions	191
	3	Different methods of integration	197
		3.1. Substitution method	197
		3.2. $\int \{1/(ax^2 + bx + c)\} dx$	197
		3.3. $\int \{(px+q)/(ax^2+bx+c)\} dx$	198
	1	3.4. Some reduction formulae	199
	4	Definite integrals	200
	5 6	Problem set	204 208
12	APPLI	CATIONS OF INTEGRATION	211
	1	Area	211
	2	Displacement	214
	3	Work done by a force	214
	4	Volume of solids of revolution	215
	5	Problem set	216
13	CONT	INUOUS FUNCTIONS OF TWO VARIABLES	219
	1	Functions of two variables	210
	2	Integral $\int_{a}^{b} \{\partial g(x, y) / \partial x\} dx$	223
	3	Inversion (change) of the order of integration	224
14	APPLI	CATIONS OF VECTORS TO GEOMETRY	227
	1	Preliminaries	227
	2	Distance between two points	229
	3	Direction cosines of a line	231
	4	Equation to a straight line	234
	5	Equation to a plane	237
	6	Problem set	241
15	DIFFE	RENTIATION OF VECTOR FUNCTIONS	245
	1	Vector functions of a single parameter and their derivation	245

Contents		xi
2	Partial differentiation of vector functions	250
	2.1. Normal to a surface	251
3	Divergence of a vector	256
4	Curl of a vector	258
5	Some identities	259
6	Second order derivation of vectors	268
	6.1. <i>Laplace</i> equation	268
7	Problem set	272
16 INTEC	16 INTEGRATION OF VECTOR FUNCTIONS	
1	Introduction	277
2	Gauss divergence theorem	281
	2.1. Implications of Gauss divergence theorem	282
3	Green's Theorem	284
4	Stoke's Theorem	285
	4.1. Linear element of a curve	285
	4.2. Curvilinear coordinates of a point on a surface	286
	4.3. Fundamental magnitudes of first order	286
5	Deductions from Stoke's theorem	289
6	Problem set	291
BIBLIOGR	АРНУ	295
INDEX		297