Contents

Preface		XI
1. Na	ano-enhanced Polymer Applications in Oil and	1
4 1	1 Introduction	1
1. 1	2 Polymer Nanocomposites for Engineering Material	2
1.	Enhancements	<u>_</u>
1.	3 Polymeric Nanoparticles and Polymer-Stabilized	5
	Nanomaterials as EOR Agents	
1.	4 Improvements to Hydraulic Fracturing Processes	8
1.	5 Improvements to Oil Drilling Processes	12
1.	6 Conclusion	14
Re	eferences	15
2. Aj	oplication of Polymer Nanocomposites in	19
Oi	l and Gas Industry	
2.	1 Introduction	19
2.	2 Polymer Nanocomposites in Upstream Processes	20
	2.2.1 EOR	20
	2.2.2 Drilling Fluids	22
	2.2.3 Anti-corrosion Coatings	24
2	2.2.4 Oll Spill Cleanup	29
Ζ.,	2.2.1 Natural Cas Processing	31 21
	2.3.1 Natural Gas Processing	31
2	4 Conclusion	33
Δł	breviations	38
Re	eferences	40
3. As	sociative Polymer Applications in Chemical Injection	51
2	1 Introduction	51
5.	3.1.1 Gas Injection	51
	3.1.2 Thermal Injection	52
	3.1.3 Chemical Injection	52
3.	2 Scope of Polymers in EOR	52
	3.2.1 Working Principle	53
	3.2.2 Commonly Used Polymers for EOR	53
3.	3 Associating Polymers	54
	3.3.1 Synthesis	56

	3.4 Characterization of Polymer Interactions	61
	3.4.1 Hydrophobic Interactions	61
	3.4.2 Stability under Reservoir Conditions	61
	3.5 Rheology of Associating Polymers	62
	3.5.1 Viscosity in Dilute State	64
	3.5.2 Viscosity in Semi-Dilute State	65
	3.5.3 Chemical Interaction	65
	3.5.4 Flow of Associating Polymers in Porous Rocks	66
	3.6 Conclusion	67
	References	68
4.	Xanthan Gum as Advanced Polymer System for	75
	Enhanced Oil Recovery	
	4.1 Introduction	75
	4.2 Structure	77
	4.3 Production	78
	4.4 Properties and Surface Modifications	79
	4.5 Applications	82
	4.5.1 Enhanced Oil Recovery Process	82
	4.5.2 Dispersant for Drilling	87
	4.5.3 Tackifier for Drilling	90
	4.5.4 Corrosion Inhibitor for Mild Steel	91
	4.5.5 Chemical Absorption of Carbon Dioxide	92
	4.5.6 Fracturing Fluids	92
	4.5.7 Removal of Dyes from Aqueous Solutions	93
	4.6 Summary and Outlook	93
	References	95
5.	Polymeric Materials for Oil Spill Clean Up and Phenol Removal	101
	5.1 Introduction	101
	5.2 Polymer Based Sponges and Foams for Oil Spill	101
	Clean Up	100
	5.3 Polymer Based Aerogels for Oil Spill Clean Up	113
	5.4 Polymer Based Fibers for Oil Spill Clean Up	115
	5.5 Polymeric Membranes for Oil-Water Mixture Separation	120
	5.6 Other Polymer Absorbents for Oil Spill Clean Up	125
	5.7 Polymeric Adsorbents for Phenol Removal	130
	5.8 Conclusion	133
	References	137

6.	Resorcinol-Formaldehyde Cryogel Nanocomposites for Oil	147
	Spill Clean Up	1 4 7
	6.1 Introduction 6.2 Materials and Methods	14/
	6.2 Materials and Methods	140
	6.2.2 GO Prenaration	140
	6.2.3 Preparation of PZTs	117
	6.2.4 Synthesis of Graphene-PZT based R-F Cryogel	149
	Containing Cobalt Ferrite Nanoparticles	
	6.3 Adsorbent Characterization	150
	6.4 Oil Sorption Studies by Cryogels	151
	6.5 Results and Discussion	151
	6.5.1 Structure and Morphology of Adsorbent	151
	6.5.2 Hydrophobicity and Oil Sorption Capacity of Cryogels	155
	6.6 Conclusion	159
	References	160
7.	Polyurethane Membranes for Gas Separation	165
	7.1 Introduction	165
	7.2 Theory of Membrane Gas Separation	166
	7.3 Ideal Membrane Characteristics	168
	7.4 Influence of Polyurethane Structure on Permeability and Selectivity	168
	7.4.1 Influence of Hard and Soft Segments	168
	7.4.2 Effect of Urethane/Urea Content	174
	7.4.3 Effect of Temperature and Pressure	174
	7.4.4 Effect of Molecular Chain Extension	175
	7.4.5 Effect of Polymer Blending	176
	7.4.6 Effect of Modifiers and Fillers	178
	7.5 Other Natural Gas Specific Applications	188
	7.6 Conclusion	189
	References	190
8.	Polymer Modified/Enhanced Adsorbents for Gas Adsorption	203
	and Sweetening	
	8.1 Introduction	203
	8.2 Polymer Enhanced Adsorbents for CO ₂ Capture	205
	8.2.1 Carbon Adsorbents	206

	8.2.2 Metal Organic Frameworks (MOF) and Porous Polymer Networks (PPN)	215
	8 2 3 Silica Based Adsorbents	217
	8 3 Polymer Enhanced Adsorbents for H ₂ S Capture	217
	8.4 Polymer Enhanced Adsorbents for SO ₂ and NO ₂ Capture	217
	8.5 Summary and Outlook	223
	References	224
9.	Polymeric Pipeline Coatings for Oil and Gas Industry	231
	9.1 Introduction	231
	9.1.1 Pipeline Coatings	231
	9.1.2 Requirements for Long Lasting Performance of Coatings	232
	9.2 Advancements in Polymeric Pipeline Coatings: A Brief Summary	232
	9.3 Polymeric Pipeline Coatings	234
	9.3.1 Polyolefin Based Pipeline Coatings	234
	9.3.2 Epoxy Based Pipeline Coatings	241
	9.3.3 Polyurethane Based Pipeline Coatings	247
	9.3.4 Fluoropolymer Based Pipeline Coatings	251
	9.4 Conclusions	255
	References	257
10.	Biopolymer Coatings	263
	10.1 Introduction	263
	10.2 Cellulose	264
	10.3 Chitosan	268
	10.4 Starch	277
	10.5 Polylactide	278
	10.6 Vegetable oil based coatings	279
	References	284
11.	Epoxy Composite Coatings for Enhanced Corrosion Resistance	293
	11.1 Introduction	293
	11.2 Experimental Details	294
	11.2.1 Materials	294
	11.2.2 Substrate Preparation	294
	11.2.3 BADGE Composite Coatings	295
	11.2.4 Characterization Techniques	295
	11.3 Results and Discussion	297
	11.4 Conclusion	307

	References	308
12.	Thermally Conducting Polymer Nanocomposites: Synthesis, Properties and Applications	311
	12.1 Introduction	311
	12.2 Modeling of Thermal Conductivity	313
	12.3 Measurement Techniques	316
	12.4 Polymer and Fillers for Conducting Nanocomposites	317
	12.5 Applications	321
	12.5.1 Heat Exchange Materials	322
	12.5.2 Materials for Harnessing Solar Energy	325
	12.5.3 Batteries	327
	12.5.4 Light-Emitting Diode Devices	328
	12.5.5 Electronic Packaging	328
	12.5.6 Energy Storage	331
	12.6 Conclusion	334
	References	334

Index

i